CIPEC EXPANSION JOINTS

DESIGN, BUILD, MAINTAIN

CIPEC expansion joints

CIPEC expansion joints are designed to enable continuous traffic between two structures, accommodating structural movements due to creep, shrinkage effects, temperature variations and deformations under live load. They are suitable for all reinforced concrete, prestressed concrete, composite and steel structures, and particularly for bridge decks. CIPEC expansion joints are also designed to allow sufficient vertical movement so that bearings can be replaced without needing to disassemble the expansion joint. They enable drainage of runoff water and they are designed to minimize traffic noise.

CONTENTS

Small movement expansion joints

page 3: JEP joints

page 5: WR joints

page 7: WOSd joints

Medium movement expansion joints

page 9: Wd joints

Large movement expansion joints

page 13: WP joints

CIPEC EXPANSION JOINTS

PRODUCT RANGE -

The CIPEC range of expansion joints offers a suitable solution for all movements from 30 to 1000 mm, and regardless of the structure on which they are to be fitted, and installation and operating conditions.

The range includes:

- · small movement expansion joints (JEP, WR and WOSd);
- · medium movement expansion joints (Wd);
- · large movement expansion joints (WP).

It also includes car park joints in the CIMAC family.

Movements	M<50	50≤M≤60	60≤M≤80	80≤M≤110	110≤M≤160	160≤M≤230	230≤M≤250	M >250
WP	-	-	-	-	-	-	WP250	WP*
Wd	-	Wd60	Wd80	Wd110	Wd160	Wd230	-	-
WOSd	-	WOSd50	WOSd75	WOSd100	-	-	-	-
WR	-	WR50	WR75	-	-	-	-	-
JEP	JEP3	JEP5	JEP8	-	-	-	-	-

Dimensions in mm.* Up to 1000

DESIGN -

Road expansion joints resist sustained loads due to continuously increasing road traffic. They are also directly exposed to pollution, oil and dissolved road deicing call

The design of CIPEC road expansion joints and the nature of the materials used are optimised to resist all these aggressions, and they have a remark-ably long life.

The main elements of CIPEC expansion joints are:

- metallic elements,
- an anchor system,
- a continuous elastomer sealing section.

Metallic elements

Metallic elements may be made either from treated aluminium or hard drawn steel, and their surface area exposed to traffic is limited, thus limiting the loads applied to them.

1

Metallic elements of joints with medium and large movements have triangular or straight teeth that aid the user during installation and mitigate road noise, regardless of the joint opening distance.

These teeth may also be installed on skew bridges without introducing any stress on the expansion joints.

Anchor systems

CIPEC road expansion joints use one of the following two systems to anchor metallic elements to the structures to be equipped, depending on the model:

- either prestressed attachments,
- or a resin mortar bonding to the support (for the JEP) joint.

The elastomer section

A continuous elastomer section over the entire length of the road surface expansion joint is inserted between metallic elements. It prevents the penetration of foreign bodies and provides waterproofing against runoff water.

This section is installed underneath the surface layer and does not resist traffic loads

Upstands of the elastomer section at the ends of the joint line also contribute to the leak tightness of the joint. A drain installed on the upstream side of the joint line also helps by collecting any water that infiltrates through the road surface layer.

— QUALITY OF CIPEC EXPANSION JOINTS

A badly designed expansion joint, or simply a wrong choice of an expansion joint, can cause severe and irreversible disorders for itself and for the structures on which it is installed.

CIPEC joints are designed for quality, and are very much appreciated for the benefits that they provide as has been demonstrated on many structural projects for more than 30 years:

- excellent traffic comfort;
- long life;
- low noise;
- high resistance to corrosion;
- no horizontal reaction. Vertical movements of structures are possible (for jacking, etc.) without the need to disassemble the joint;
- protection of surfaces under the joint;
- good resistance to heavy duty and frequent traffic loads;
- adaptability to all surface structure types;
- easy installation on new or old structures;
- low servicing and maintenance

JEP EXPANSION JOINTS

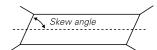
DESIGN —

These joints form part of the gap joints family. They are composed of two sections of drawn steel delivered in three-metre lengths and placed facing each other. These elements are equipped with two sinusoidal anchor parts cast into a resin-based mortar beam bonded to the structure.

The joint line is formed by a sequence of pairs of sections welded end to end.

SPECIAL FEATURES —

The JEP joint is installed within the thickness of the surface layer. It is quickly installed and because there are no recesses or drillings in the structure, the JEP joint is well suited for solving specific problems with the replacement of existing joints, work done lane by lane, renovations in which only short traffic interruptions can be accepted, and in which completion speed is all important.

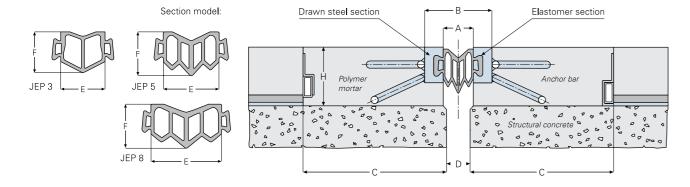

Traffic can be allowed over the joint after three hours.

Since there are no teeth, JEP joints can accept small side movements with-out any change to their intrinsic qualities.

MOVEMENTS RANGE —

The following table shows the capacity of JEP joints to accept movements as a function of the skew of the bridge:

Туре	Straight (100 gr)	80 gr	60 gr	40 gr
JEP3	30	31.5	37	51
JEP5	50	52.5	62	85
JEP8	80	84	99	136



Dimensions in mm.

TECHNICAL DATA

Туре	ØL	A min.	A max.	B min.	B max.	D min.	D max.	Н	С	E	F
JEP3	30	30	60	80	110	10	40	80	140	60	55
JEP5	50	25	75	75	125	10	60	80	140	75	59
JEP8	80	25	105	75	155	10	90	80	140	95	59

Dimensions in mm.

ACCESSORIES

The following accessories are available to make the surface layer completely watertight at the joint and to make the action of the joint effective over the footpath (and other areas not carrying traffic):

- pavement joints *figure1*;
- end section upstands figure 2;
- drain.

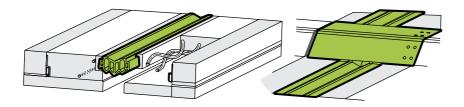


Fig. 1 : Detail of the footpath joint. Right: kerb cover plate.

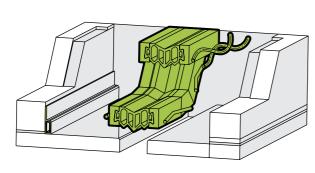


Fig. 2 : Details of section upstand.

WR EXPANSION JOINTS

DESIGN —

These joints form part of the gap joints family. They are composed of two ex-truded aluminium alloy sections delivered in three-metre lengths and placed facing each other

These elements are anchored by a series of attachments slightly inclined in reinforced microconcrete beams and fixed to structures by continuity bars.

A series of pairs of sections installed end-to-end forms the line of the joint.

SPECIAL FEATURES —

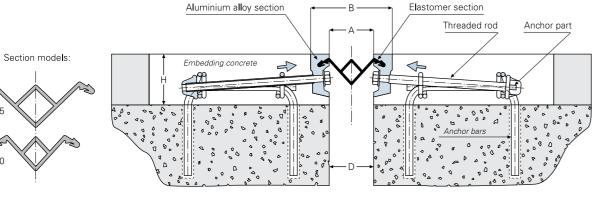
The WR joint is installed within the thickness of the surface layer. It is installed quickly and the fact that there are no recesses in the structures makes the WR a particularly economic joint.

It is suitable for new work or renovation work.

MOVEMENTS RANGE —

The following table shows the capacity of WR joints to accept movements as a function of the skew of the bridge:

Туре	Straight (100 gr)	80 gr	60 gr	40 gr
WR50	50	52,5	62	85
WR75	75	79	92	127



Dimensions in mm.

TECHNICAL DATA

Туре	ØL	A min.	A max.	B min.	B max.	D min.	D max.	Н
WR50	50	15	65	65	115	15	65	70
WR75	75	15	90	65	140	15	90	70

Dimensions in mm.

ACCESSORIES

The following accessories are available to make the surface layer completely watertight at the joint and to make the action of the joint effective over the footpath (and other areas not carrying traffic):

- footpath joints table 1, figures 1 and 2;
- end section upstands figure 3 + kerb cover plate figure 4;
- drain.

Туре	Model	A min.	A max.	B min.	B max.	С	Н
WR50	TR50	15	65	65	115	150	100
WR75	TR75	15	90	65	140	150	100

Tab. 1: Types and models of footpath joints.

Dimensions in mm.

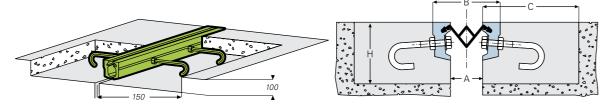


Fig. 1: Detail of the footpath joint.

Fig. 3: Detail of the section upstand.

Fig. 4: Kerb cover plate.

Fig. 2: TR type footpath joint.

WOSD EXPANSION JOINTS

DESIGN -

These joints form part of the gap joints family. They are composed of two extru-ded aluminium alloy sections delivered in three or six-metre lengths and placed facing each other.

A series of pairs of sections installed end-to-end forms the line of the joint. The metallic elements are anchored to the structure by fasteners.

SPECIAL FEATURES —

WOSd joints may easily be removed if necessary, since the anchor bolts are easily accessible and due to the method of fastening the elastomer section.

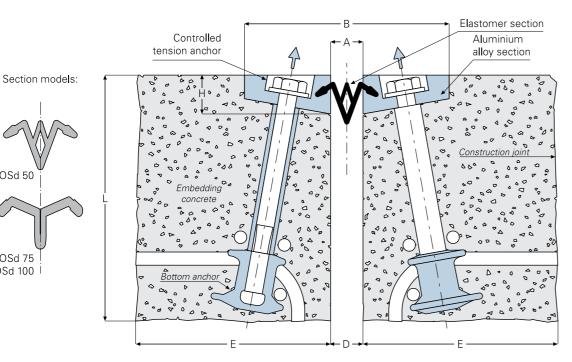
The shape of the elastomer section and its position slightly below the surface enables systematic elimination of debris simply by suction caused by passing vehicles. It is easy to lift WOSd joints if resurfacing is carried out.

WOSd joints can accept any amount of skew without any change to their intrinsic qualities, since there are no teeth.

MOVEMENTS RANGE -

The following table shows the capacity of WOSd joints to accept movements as a function of the skew of the bridge:

Туре	Straight (100 gr)	80 gr	60 gr	40 gr
WOSd50	50	52.5	62	85
WOSd75	75	79	92	127
WOSd100			123	170


Dimensions in mm.

TECHNICAL DATA

Recesses

Туре	A min.	A max.	B min.	B max.	D min.	D max.	Н	E	L
WOSd50	15	65	146	196	15	65	28.5	150	200
WOSd75	0	75	150	225	12	87	30	150	200
W0Sd100	0	100	150	250	12	112	30	150	200

Dimensions in mm.

ACCESSORIES

Dimensions in mm.

The following accessories are available to make the surface layer completely watertight at the joint and to make the action of the joint effective over the footpath (and other areas not carrying traffic):

- pavement joints table 1 and figure 1;
- end section upstands + kerb cover plate figures 2 & 3;
- drain.

WOSd 50

WOSd 75 WOSd 100

Туре	Model	Α	В	С	D min.	D max.	Н
WOSd50	T050	65.5	200	200	15	65	70
WOSd75	T080	75	200	200	0	80	70
WOSd100	TO100	75	200	200	0	100	70

Tab. 1: Types and models of footpath joints.

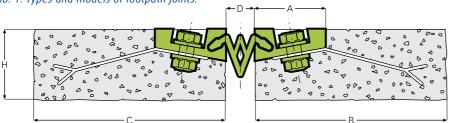


Fig. 1: Footpath joint type TO.

Medium Movements

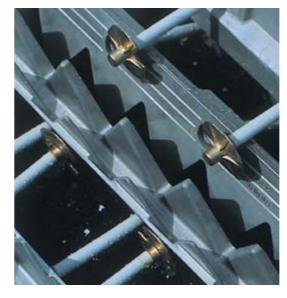
Wd EXPANSION JOINTS

DESIGN -

These joints form part of the cantilevered teeth expansion joints family.

They are composed of pairs of independent elements with triangular teeth made of cast aluminium alloy, delivered in one-metre lengths and placed facing each other. A series of pairs of elements installed end-to-end forms the joint line.

The metallic elements are anchored to the structures.




SPECIAL FEATURES -

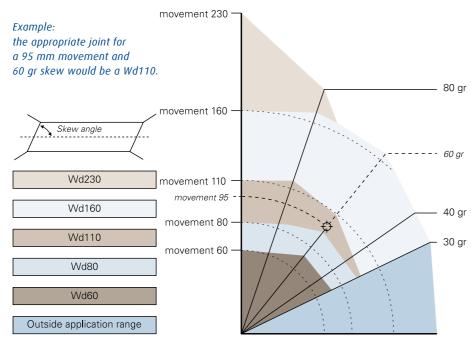
Wd joints are exceptionally robust as a result of the principle used to connect metallic elements to structures based on the choice of materials used, and a controlled method of installation.

They are designed for heavy and frequent traffic.

The triangular teeth of the metallic elements enable operation with no gap and thus enable perfect traffic continuity with a significant reduction in traffic noise over the joint, regardless of its opening dimension.

The easy access to anchor bolts and the short length of the elements facilitate maintenance and removal of the Wd joint without interrupting traffic, except on the lane being repaired.

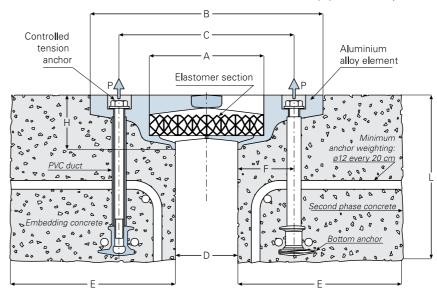
Wd joints accept a skew of 30 gr without any change to their intrinsic qualities.



MOVEMENTS RANGE

The following table shows the capacity of Wd joints to accept movements as a function of the skew of the bridge:

Туре	Straight (100 gr)	80 gr	60 gr	40 gr	30 gr
Wd60	60	61	71	66	67
Wd80	80	84	92	85	86
Wd110	110	116	104	92	90
Wd160	160	169	158	141	139
Wd230	230	185	127	102	97


Dimensions in mm.

TECHNICAL DATA -

										Rece	esses	A	<u>ttachment</u>	5
Туре	A min.	A max.	B min.	B max.	C min.	C max.	D min.	D max.	Н	E	L	F	P (kN)*	Nb**
Wd60	65	125	185	245	125	185	20	80	55	200	200	52.5	65	5
Wd80	90	170	220	300	155	235	30	110	57	200	200	62.5	65	6
Wd110	120	230	300	410	210	320	40	150	82	250	250	85	100	5
Wd160	170	330	400	560	290	450	50	210	98	300	280	120	190	4
Wd230	240	470	540	770	420	650	70	300	123	350	280	175	190	5

Dimensions in mm. * P(kN) = tension forces per attachment. ** Nb = Number of attachments per element.

ACCESSORIES -

The following accessories are available to make the surface layer completely watertight at the joint and to make the action of the joint effective over the footpath (and other areas not carrying traffic):

- footpath joints table 1 and figures 1 & 2 (following page);
- end section upstands + kerb cover plate figure 3 (following page);
- drain.

Туре	Model	Α	В	С	D min.	D max.	Н
Wd60	T080	75	200	200	5	65	70
Wd80	TO80	75	200	200	5	85	70
Wd110	PL110	200	100	200	40	150	120
Wd160	PL160	260	100	250	50	210	120
Wd230	PL230	350	100	320	70	300	120

Dimensions in m

Tab. 1: Types and models of footpath joints.

Fig. 1: Footpath joint type PL.

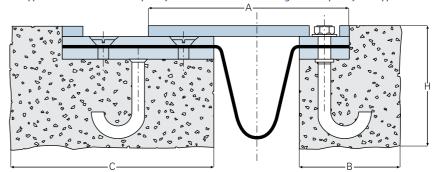
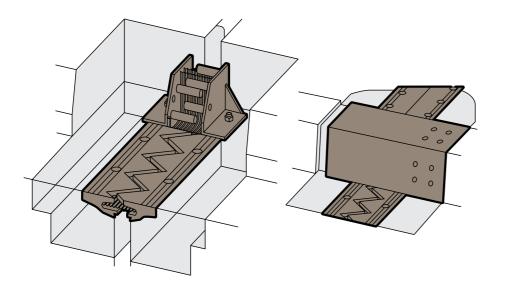



Fig. 2: Footpath joint type 10.

12

Fig. 3: Details of section upstand & kerb cover plate.

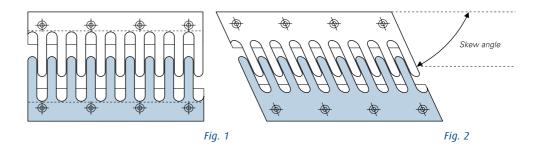
WP EXPANSION JOINTS

DESIGN -

These joints form part of the cantilevered teeth expansion joints family. They are composed of pairs of independent elements with parallel teeth delivered in onemetre lengths and placed facing each other.

These teeth are cut from a rolled steel plate, or cast from aluminium alloy.

A series of pairs of elements installed end-to-end forms the joint line. Metallic elements are anchored to structures using controlled tightness fasteners.


The WP joint may be used with a system for recovering runoff water.

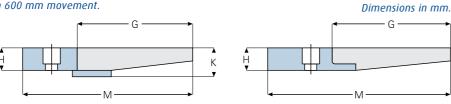
This system is composed of a continuous elastomer looped membrane over the entire length of the joint line or two elastomer membranes with a gutter located under the joint.

SPECIAL FEATURES —

WP joints are made on request and may be adapted to the direction of displacement of the structure, either straight (*figure 1*) or skew (*figure 2*).

Their capacity may vary from 250 to 1000 mm depending on the model.

13


A controlled tension anchors per element rebate laying sockets precast in the structure in a standby fillet Bedding mortar Bedding mortar Second phase concrete construction joint embedding Concrete structure in a standby fillet structure in

Metallic elements Recesses Steel type A min. A max. B min. B max. C min. C max. D min. D max. G М Ε WP250 WP300 WP350 WP400 820 740 245 350 WP450 1110 50 WP500 1020 | 890 WP550 620 1220 WP600

Dimensions in mm.

										Meto	ıllic eleme	ents		Recesse:	5
Aluminium type	A min.	A max.	B min.	B max.	C min.	C max.	D min.	D max.	G	Н	K	М	E	F	L
WP200	220	420	430	630	310	510	50	250	210	52	-	315	-	130	350
WP250	270	520	570	820	380	630	50	300	260	75	-	410	-	165	350
WP300	320	620	620	920	430	730	50	350	310	75	-	460	-	190	350

Please call us for models with more than 600 mm movement.

Above: standard WP. Adjacent: aluminium alloy WP.

COLLECTION OF WATER -

Basic WP joints may be used with a runoff water collection system (type 1- *figure 1*).

This system is composed of:

- a continuous elastomer looped membrane under the entire length of the joint line (type 2 *figure 2*);
- an elastomer section inserted between the metallic elements (type 3 fig. 3);
- two membranes made of elastomer used with a gutter placed under the joint (type 4 *figure 4*).

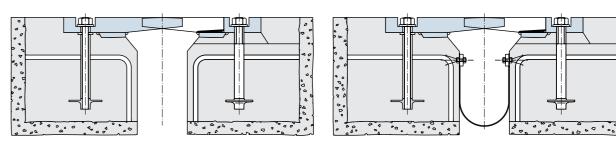


Fig. 1: Basic type.

Fig. 2: Type 2 with looped membrane.

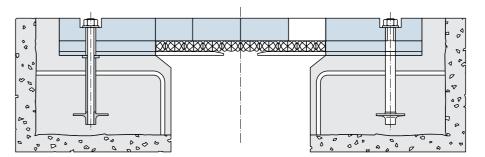
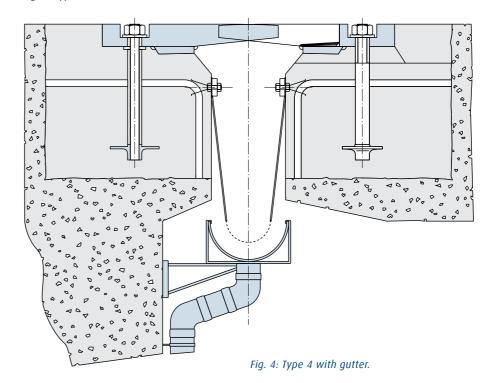



Fig. 3: Type 3 with elastomer section.

ACCESSORIES

The following accessories are available to make the surface layer completely watertight at the joint and to make the action of the joint effective over the footpath (and other areas not carrying traffic):

- footpath joints (with or without water recovery membrane) table 1 et figure 1 & 2;
- drain.

	Metallic	elements	Recesses					
Туре	E	F	В	С	Н			
WP200	280	250	400	200	150			
WP250	320	300	450	200	150			
WP300	380	350	500	200	150			
WP350	420	400	550	200	150			
WP400	500	450	600	200	150			

Table 1: Types and models of footpath joints.

Dimensions in mm.

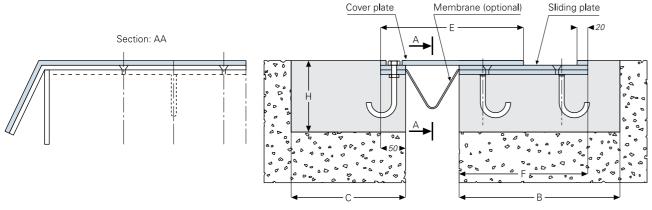
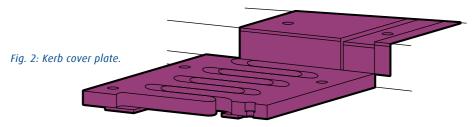



Fig. 1: Footpath joint.

• Argentina Freyssinet - Tierra Armada S.A

• Brazil

Freyssinet Brazil Ltda - Canada

Freyssinet Canada Ltée

• Chile

Freyssinet - Tierra Armada S.A.

Freyssinet Colombie

• El Salvador Fessic S.A De C.V.

Freyssinet de México Tierra Armada S.A.

• Panama

Freyssinet

United States

Freyssinet Inc.

 Venezuela Freyssinet - Tierra Armada CA

- Belgium

Freyssinet Belgium N.V.

• Bulgaria

Denmark

A/S Skandinavisk Spaendbeton

• Estonia

Latvijas Tilti

• France Freyssinet France Freyssinet International & Cie

Hungary

Pannon Freyssinet Kft

Iceland

A/S Skandinavisk

• Ireland Freyssinet Ireland Spaendbeton

Latvia Latvijas Tilti

- Lithuania Latvijas Tilti

Macedonia

Freyssinet Balkans

Netherlands Freyssinet Nederland B.V. *

• Norway
A/S Skandinavisk Spaendbeton

Poland

Freyssinet Polska Sp z.o.o.

• **Portugal** Freyssinet - Terra Armada S.A.

• Spain

Freyssinet S.A

• Romania

Freyrom • Russia

Freyssinet

• Serbia

Freyssinet

Slovenia

Freyssinet Adria SI d.o.o.

Sweden

A/S Skandinavisk Spaendbeton

• Switzerland Freyssinet S.A.

Turkey

Freysas

 United Kingdom Freyssinet Ltd

AFRICA AND MIDDLE EAST

• Abu Dhabi Freyssinet Middle East LLC

Algeria

Freyssinet Algérie

• Dubai

Freyssinet Gulf LLC • **Egypt** Freyssinet Menard Egypt SAE

Jordan
Freyssinet Jordan LLC

• Kuwait Freyssinet Kuwait

Morocco

Freyssima

• Oman Freyssinet Arabian Sea LLC

• **Qatar** Freyssinet Menard Qatar WLL

- Saudi Arabia

Freyssinet Menard Saudi Arabia Ltd.

Sharjah Freyssinet Menard Northern Emirates LLC

• South Africa Freyssinet Posten (Pty) Ltd

• Tunisia Freyssinet

Hong Kong

Freyssinet Hong Kong Ltd
Freyssinet Insight Sewer Services Ltd

Freyssinet Menard INDIA Pvt Ltd

• Indonesia
PT Freyssinet Total Technology

• Japan

Freyssinet KK Japon Macau

Freyssinet Macau Ltd

• Malaysia Freyssinet PSC (M) SDN BHD

Pakistan Freypak Ltd Australia

Freyssinet Vietnam

Vietnam

OCEANIA

• Thailand Freyssinet Thailand Ltd

• Singapore PSC Freyssinet (S) Pte. Ltd

Freyssinet Korea Co. Ltd- Taiwan

Freyssinet Taiwan Engineering

- South Korea

Freyssinet Australia Pty Ltd

• New Zealand Freyssinet New Zealand Ltd

1 bis, rue du Petit Clamart 78140 Vélizy-Villacoublay - France Tel: +33 1 46 01 84 84 - Fax: +33 1 46 01 85 85 www.freyssinet.com